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Response Surface Method for Airfoil Design in Transonic Flow

Jaekwon Ahn,¤ Hyoung-Jin Kim,† Dong-Ho Lee,‡ and Oh-Hyun Rho§

Seoul National University, Seoul 151-742, Republic of Korea

A response surface method (RSM) applied to a transonicairfoildesign problem is studied with other optimization
methods. The objective function and constraints of RSM are modeled by quadratic polynomials, and the response
surfaces are constructed by Navier–Stokes analyses in the transonic � ow region. To assess the advantagesof RSM,
the design results by RSM are compared to those of a gradient-based optimization method (GBOM), namely,
the discrete adjoint variable method. Comparisons are made for various sets of design variables and geometric
constraints. It is observed that the response surface method is able to capture the nonlinearbehaviorof the objective
function and smooth out high-frequency noises in transonic regime. These features enable the method to design
a shock-free transonic airfoil with fewer design variables than in GBOM. In addition, RSM gives robust design
results for the geometric constraints with different characteristics, whereas the GBOM depends heavily on the
method of constraint speci� cation. The results indicate that RSM could be used as an effective design tool for
multidisciplinarydesign optimizationproblems, in which � ow� elds of design conditions are signi� cantly nonlinear
with many constraints imposed.

Nomenclature
Cd , Cl = aerodynamic coef� cients, lift and drag, respectively
E, F = inviscid � ux vectors
Ev , Fv = viscid � ux vectors
J = Jacobian
n rc = number of regression coef� cient
ns = number of observations
nv = number of design variables
Q = vector of conservativevariables
R = residual vector
t=c = thickness-to-chordratio
wk = weighting factors of shape function
X = grid position vector
¯ = vector of design variables

Subscripts

p = predicted value
0 = baseline property

Introduction

O BJECTIVE function and constraints in aerodynamic shape
optimization involving transonic � ow numerical simulation

may be nonsmooth and noisy. Nonsmoothness is created by the
presence of � ow discontinuitiessuch as shock waves. Noise can be
caused either by the changes in computational mesh geometry due
to free boundaries or by poor convergence of numerical schemes
(as occurs when using � ux limiters in a shock capturing scheme).
Although these features can make a small change in some design
parameters, it could lead to a huge rami� cation in the objective
function or constraints. In such a case, it is likely that the design
results would fall into just local optima. These issues in transonic
� ow region are well discussed by Narducci et al.1

These nonsmoothness and noise issues of the objective func-
tion become more serious in gradient-based optimization methods
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(GBOMs), where the objective functionvalue as well as its gradient
information are used. As the result of a solid mathematical back-
ground, GBOMs have been applied to various single disciplinary
design problems, includingaerodynamicaircraftcomponentdesign
in all subsonic, transonic, and supersonicregimes.2¡4 In multidisci-
plinary design optimization (MDO) problems, which usually have
objective functions coupled with numerous constraints, it is sig-
ni� cantly dif� cult to formulate the design problem with GBOMs.
Because the optimizationdepends greatly on the formulation of the
designproblem,the processof searchingfor the optimumis likely to
render just a local value.Another shortcomingof GBOMs is that be-
cause many analysis programs were not written with an automated
design in mind, adaptation of these programs to an optimization
code may need signi� cant reprogramming in the analysis routine.

Moreover, additional changes of objectives and constraints re-
quire the whole designprocess to be recalculatedwith a heavy com-
putational cost.

In light of this, the response surface method (RSM) drew much
attentionas an ef� cient tool for theMDO of aerospacevehiclessince
early 1990s. RSM is advantageous in MDO applicationsbecause it
providesusefuldisciplinarymodelsthat canbe easilycombinedwith
each model and manipulated together by designers.Recently, RSM
has been successful in combined aerodynamic–structuraloptimiza-
tion of the high-speed civil transport design where linear behavior
of � ow characteristics is dominant.5;6

The purpose of this paper is to verify the applicability of RSM
in transonic design problems where � ow characteristics are highly
nonlinear.The validationis performedthroughquantitativecompar-
isons of the design results with a GBOM using an adjoint variables
method. The adjoint variables method7¡10 is chosen because the
method makes the computational cost for the gradients of the ob-
jective function or constraints independent of the number of the
design parameters. The method has, thus, been frequently used as
an ef� cient tool for aerodynamic shape design optimization.

For practical aerodynamic shape design problems, response
surface models of polynomial order higher than two are compu-
tationally too expensive. RSM, if proven feasible to transonic air-
foil design with the quadratic polynomial, is expected to have the
following advantages over other direct optimization methods:

1) It smoothesout the high-frequencynoise of the objective func-
tionand is, thus, expectedto � nd a solutionnear the globaloptimum.

2) Various objectives and constraints can be attempted in the
design process without additional numerical computations.

3) It can be effectively applied to MDO problems with many
objectives and constraints.

4) It does not require a modi� cation in analysis codes.
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However, there are some drawbacks to RSM. The range of de-
sign parametershighly affects the � tting capabilitiesof the response
model. The wide ranges may increase prediction errors such that
predictedperformancescannot be obtainedexactly. RSM also has a
limitationon the number of the design parametersbecause the com-
putation time for constructionof the responsemodel is proportional
to the square of the number of design parameters.

The objectives of the present paper are as follows: 1) to validate
RSM in the transonicturbulent� owregionas an aerodynamicdesign
and MDO tool, through comparing the design results with GBOM;
2) to show the effects of the number of design variables on design
results, and 3) to compare constraints handling capability of each
design method.

To achieve these goals, the same � ow analysis code for two-
dimensional Navier–Stokes equations is employed in both design
methods. During the comparison between RSM and GBOM, the
affordable number of design variables is studied with the emphasis
on transonic � ow applications.Several speci� cations of geometric
constraints are explored for the optimal design.

The following sections brie� y describe the technical framework
of the � ow analysis method and optimization method of GBOM
and RSM. Several comparisons of design results are made in the
“Results and Discussions” section.

Flow Analysis
A two-dimensional Navier–Stokes solver developed and vali-

dated in Refs. 11 and 12 is used for the � ow analysis. Reynolds-
averaged two-dimensional compressible Navier–Stokes equations
in generalized coordinates are used in the conservation form based
on a cell-centered � nite volume approach,

1
J

@Q
@t

D ¡R (1)

where Q is a four-elementvector of conserved� ow variablesas Q D
.½ , ½u, ½v, ½e/T and R is the residual vector as R D .E ¡ Ev/» C
.F ¡ Fv/´.

Roe’s � ux differencesplittingscheme is adoptedfor the spacedis-
cretization in the inviscid � ux terms E and F of the residual vector
on the right-hand side; the MUSCL approach with a Koren limiter
is employed to obtain a third-order accuracy. A central difference
method is used for viscous � ux terms Ev and Fv of the residual
vector. For temporal discretization,a Euler implicit method and lin-
earized van Leer � ux Jacobian are used. In the implicit part, Beam
and Warming’s alternating direction implicit (ADI) method with
local time stepping is implemented.Turbulenceeffects are incorpo-
rated using the Baldwin–Lomax algebraic model with a relaxation
technique.

A C-type grid system with 169 £ 61 points around an airfoil is
generatedby a hyperbolictechnique.The residualof the � ow solver
is reduced by four orders of magnitude from the initial condition
during the computations of objective function of the GBOM and
data point of the RSM.

Design Objective and Variables
The objective of the present design study is to minimize the drag

Cd of an airfoilwith constraintson lift and contourarea or maximum
thickness, subject to Cl ¡ Cl0 ¸ 0:

Area ¡ Area0 ¸ 0 or .t=c/ ¡ .t=c/0 ¸ 0 (2)

In GBOM, several forms of objective functions and constraints
were tested to obtain reasonable design results, from which the
following objective function is chosen:

F D 10 ¢ Cd C max
¡
Cl ¡ Cl0 ; 0

¢
C 10 ¢ max.Area ¡ Area0; 0/ (3)

The penalty factor of 10 is multiplied to balance the orders of mag-
nitude of the terms. When the combined objective function is used,
the lift constraint can be slightly violated. If the lift constraint is
imposed with a constrained design option in a gradient-basedopti-
mizer, excessivecomputationalcost is expecteddue to theadditional
adjoint code for the gradient of lift constraint.

The airfoil geometry is modi� ed adding a linear combination of
Hicks and Henne shape functions fk as follows:

y ¡ ybase C
nvX

k D 1

wk ¢ fk; fk D sin3
£
¼x e.k/

¤

e.k/ D .0:5/

in.xk /
; fk D

p
x.1 ¡ x/

e.x ¢ k/
(4)

where xk represents the location of the maximum height of the base
sinusoidal function.Although Hicks and Henne shape functionsare
not orthogonal functions, the geometry can be highly perturbed at
the desirable position by controlling the xk .

Gradient-Based Optimization with an Adjoint Method
The GBOM in this work couples a computational � uid dynamics

(CFD) code and a numerical optimizer to create a design tool. In this
study, DOT, a design optimization tool developed by Vanderplaats
and Hansen,13 is adopted. A Broydon–Flectcher–Goldfarb–Shanno
variable metric method is selected for unconstrained minimization
cases and a modi� ed method of feasible directions is selected for
constrained minimization cases.

Sensitivityderivativesare computedbyanadjointsensitivityanal-
ysiscodedevelopedbyKim et al.,10 and the code is derivedfromdis-
crete two-dimensional compressible Navier–Stokes equations with
a Baldwin–Lomax algebraic turbulence model.

The discreteresidualvectorof � ow equationsfor steadyproblems
can be written as

R[Q.¯/; X .¯/; ¯] D 0 (5)

The design variable¯ appears in the residual vector explicitly when
¯ is a nongeometricvariablesuch as incidenceangle,Mach number,
Reynolds number, etc. Equation (5) is directly differentiated with
respect to ¯k via the chain rule to yield the following equation:
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The sensitivityderivativeof the aerodynamiccoef� cient C j with
respect to the k-th design variable ¯k is given by
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Because the total derivative of the residual vector fdR=d¯kg is null
in the steady state, we can introduce the adjoint variable vector and
combine Eqs. (6) and (7) to obtain
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Coef� cients of the � ow variable sensitivity vector fdQ=d¯k g form
the following adjoint equation:

µ
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@ Q

¶T

f¸ j g C
»

@C j

@ Q

¼
D 0 (9)

If we � nd an adjoint variable vector f¸ j g that satis� es the adjoint
equation,we can obtain the sensitivityderivativeof C j with respect
to ¯k by the following equation, without any information about the
� ow variable sensitivity vector fdQ=d¯k g:
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This makes the computationalcost for sensitivity analysis indepen-
dent of the number of design variables.

The adjoint equation (9) is converted to a system of linear al-
gebraic equations and is solved by the same ADI scheme as the
� ow solver. The residual of the adjoint sensitivity analysis code is
reduced by four orders of magnitude from an initial value. More
details of the adjoint variable method can be found in Ref. 10.

RSM

RSM builds a response model by calculating data points with
experimental design theory to prescribe a responseof a system with
independentvariables.14 The relationshipcan be written in a general
form as follows:

y D F
¡
x1; x2; x3; x4; : : : ; xnv

¢
C " (11)

where " represents the total error, which is often assumed to have
a normal distribution with a zero mean. The response model F is
usuallyassumedas a second-orderpolynomial,which can be written
for nv variables as follows:

y.p/ D c0 C
X

i

ci xi C
X

1 · i · j · nv

ci j xi x j ; p D 1; : : : ; ns (12)

Basis functions’i .x/ for the regressionmodel of Eq. (12) such as
1; x1; x2; x3 , : : : , xnvI x2

1 ; : : : , x2
nv I x1x2; x1x3, : : : , x1xnv , x2x3, : : : ,

xnv ¡ 1xnv , lead to an overdeterminedmatrix problem:

y D Xc (13)

where y D .y1; y2; y3; : : : ; yns /, c D .c1; c2; : : : ; cnrc/, and X is the
ns £ nrc matrix, as follows:

X D

2

6664

’1

¡
x .1/

¢
: : : ’nrc

¡
x .1/

¢

:::
: : :

:::

’nrc

¡
x .ns/

¢
’nrc

¡
x .ns/

¢

3

7775
(14)

As a selection technique of data points, the D-optimality
condition14 is used, and the candidate points are three level fac-
torial designs. The D-optimality criterion states that the ns points
to be chosen are those that maximize the determinant jXT Xj. This
criterion has following properties:

1) The data pointset that maximizes jXT Xj is also the set of points
that minimizes the maximum variance of any predicted value from
the regression model.

2) The data pointset that maximizes jXT Xj is also the set of points
that minimizes the variance of the regression coef� cients.

3) The design obtained is invariant to changes in scale.
The regression coef� cients ci can be determined using the

least-square � tting. The number of regression coef� cients (nrc) is
.nv C 1/.nv C 2/=2 in Eq. (12) and the D-optimal point selection
method requires calculating more than nrc data points. It is known
to be suf� cient to constructa responsemodel with ns of 1.5»3 times
n rc (Ref. 15). In this study, 121 experiments are performed when nv

is 10, and 201 experiments are performed when nv is 12.
Becausethe computationtime for theconstructionof the response

model is proportionalto the squareof thenumberof designvariables
nv , RSM has a limitation on the number of design variables. In
addition, when an airfoil optimized by RSM is analyzed by a CFD
code, one may not obtain the predictedperformancesbecauseof the
intrinsic prediction error of RSM.

Results and Discussion
RAE2822 is selected as the baseline airfoil of the design study.

The design condition is imposed as M1 D 0:73, ® D 2:7 deg, and
Re D 7 £ 106 . RAE2822exhibitsa strongshockon the uppersurface
under the aforementionedconditions. The lift and drag coef� cients
of RAE2822 at the designconditionare 0.7894and 0.01928,respec-
tively. The contour area of the airfoil is 0.07780 with a maximum
thickness ratio of 0.1210.

Two kindsof designstudiesare performedto validate the viability
of RSM in transonic turbulent � ow. First, GBOM with different
numbers of design variables are performed to obtain a reference
airfoil for RSM. The design results of GBOM are compared to
those of RSM with a different number of design variables. Second,
two geometric constraints, the area constraint and the maximum
thickness constraint, are tested to asses constraint affordability of
RSM.

Number of Design Variables

In aerodynamic shape design the real design space is in� nite di-
mensional. The optimum number of design variables may, thus,
vary according to the design method and the design problem. Gen-
erally, increasing the number of the basis functions may improve
the quality of the design.

The method is named depending on the number of design vari-
ables in GBOM. For instance, GBO50DV indicates 50 variables
design GBOM. Other design cases will also be referred to in similar
ways.

To maintain consistency between design variable sets, a design
variable set with a larger number of design variables is made by
adding new design variables. For example, GBO30DV retains the
design variables of GBO20DV and has 10 extra new design vari-
ables.

All convergence criteria are used as default values in DOT.12

However, if the objectivevalue is not improved during four (default
valueD 2) consecutive design iterations, it is considered to have
converged in this work.

Table1 shows theaerodynamicperformancesandcomputingtime
of optimized airfoils for various GBOMs. The optimized airfoil
shapes and correspondingpressure distributionare shown in Fig. 1.

The adjoint code executed to compute the gradients of the objec-
tive function requires about twice the CPU time used by the � ow
solver. For example, the total solver time (24, 2) for GBO10DV in
Table 1 implies that the number of � ow solver calls and the number
of adjoint solver calls is 24 and 2, respectively.This is equivalent to
28 (D24C 2 £ 2) � ow solver analyses during the whole optimiza-
tion process.

The drag coef� cients with parentheses in Table 1 are the values
when the lift coef� cient is 0.7894. These values are acquired using
a linear interpolation.

Note from Table 1 and Fig. 1 that the obtained performance and
the required computationalcost are not proportional to the number
of design variables. Because there is much design iteration near the
optimum without much change of the objective, there seems to be
a higher noise phenomenon of nonsmooth objective function near
the optimum.

GBO20DV and GBO30DV with fewer design variables produce
better results than GBO40DV. GBO20DV minimizes the drag co-
ef� cient from 0.01928 to 0.01545, satisfying the lift coef� cient and
contour area constraints. However, GBO50DV yields the best per-
formance that has the shock-free airfoil under the contour area and
the lift coef� cient constraints. The total (pressure plus skin fric-
tion) drag coef� cient is reduced from 0.01928 to 0.01510.This case
can thus be considered as a global optimum for the design problem
and the corresponding airfoil is used as a reference airfoil for the
following comparisons.

RSMs are then performed with 10 design variables. Figure 2
shows the variationrangeof designvariablesfor RSM10DV. Table 2
presents the � tting quality of the constructed response models.

Table 1 Aerodynamic performances of optimized airfoils by GBOM

Airfoil Cl Cd L=D Area Solver time

RAE2822 0.7894 0.01928 40.94 0.07780 ——
GBO10DV 0.7866 0.01573(0.01579) 50.00 0.07781 (24, 2) D 28
GBO20DV 0.7958 0.01545(0.01532) 51.51 0.07898 (53, 9) D 71
GBO30DV 0.7894 0.01544 51.13 0.07783 (111, 24)D 159
GBO40DV 0.7894 0.01570 50.28 0.07811 (96, 20) D 136
GBO50DV 0.7894 0.01510 52.04 0.07785 (146, 32)D 210
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Table 2 Fitting quality of RSM10DV

Coef� cient R2 adjusted-R2 %RMSE

Cd 0.985 0.968 1.37
Cl 0.998 0.995 0.20

Fig. 1 Airfoil shapes and pressure distribution of GBOMs.

Here, the percentage of root mean square error (%RMSE) is de-
� ned as

%RMSE D 100

s
1
ns

nsX

i D 1

¡
y1 ¡ y.p/

i

¢2

,
1
ns

nsX

i D 1

yi (15)

R2, the coef� cient of multiple determination, is a measure of the
amount of reduction in variabilityof y obtainedby using the regres-
sor variables(design variables) and has the valuebetween0 and 1. A
larger value of R2 does not necessarilyimply that the model is � tted
well.Addinga variable to the model always increases R2, regardless
of whether the additional variable is statistically signi� cant or not.
Adjusted R2 is often employed to consider if nonsigni�cant terms
have been included in the model. Because the R2 and adjusted-R2

values for Cl and Cd models are larger than 0.96 and %RMSE are
less than 1.5%, the response surface models are � tted successfully.
Therefore, the quadratic models are suf� cient to model the nons-
mooth and noisy objective functionand the constraintsfor transonic
turbulent � ow.

Fig. 2 Used shape functions and range of design variables.

Figure 3 shows the optimized airfoil shapes and surface pres-
sure distributions by both methods. In both methods the shock
strengths are reduced and suction peaks somewhat increased. In
the case of RSM10DV, the design results are far from the global
optimum and are almost similar to those of GBO10DV. When com-
pared to GBO50DV, it is con� rmed that RSM10DV has resulted
in a local minimum. This is mainly due to the insuf� cient number
of design variables employed. Figure 4 shows the designed airfoil
shapes by GBO10DV, RSM10DV, and GBO50DV. Note that 10 de-
sign variables are not suf� cient to re� ect the sharp change of the
leading edge shape. This can be seen more clearly by analysis of
variance14 (ANOVA) results on the response surface model pre-
sented in Table 3, which shows the results of linear terms of the Cd

response model. Here, the t-static is de� ned as

t ¡ static D
c j ¡ 1q

O¾ 2.XT X/¡1
j j

; j D 1; : : : ; Nrc (16)

A higher t-static value means that the term has more dominant
effect on the response model than other terms. As shown in Ta-
ble 3, the design variables x6 and x7 corresponding to an upper
surface leading-edge modi� cation (see Fig. 2) have higher t -static
values than others. This strongly implies that we can improve the
design results by increasing the variation ranges of x6 and x7 or by
adding more design variables in that region. However, increasing
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Table 3 Regression analysis and ANOVA data

Variable Coef� cient t-static value

x1 ¡1.217E¡04 ¡2.886
x2 3.063E¡04 7.232
x3 4.962E¡04 11.482
x4 ¡1.035E¡04 ¡2.408
x5 ¡5.557E¡06 ¡0.130
x6 9.834E¡04 23.195
x7 1.665E¡03 39.298
x8 ¡5.907E¡04 ¡13.818
x9 5.033E¡05 1.202
x10 ¡2.676E¡04 ¡6.371

Fig. 3 Design results with 10 design variables.

the variation ranges may have negative effect on the � tting quality
of the responsesurface model. Therefore, two design variables, x11
and x12 are added as shown in Fig. 2 to the set of 10 design variables
at the leading-edge region of upper surface to allow more drastic
variation of the leading-edgegeometry.

For the RSM12DV case, 201 experiments are performed to
construct response surface models, the � tting ability of which is
shown in Table 4. Although the same range of design variables
for the RSM10DV is used, R2 and adjusted-R2 values are some-

Table 4 Fitting quality of RSM12DV

Coef� cient R2 adjusted-R2 %RMSE

Cd 0.943 0.897 3.39
Cl 0.977 0.958 0.84

Fig. 4 Airfoil shapes comparison of GBO50DV, RSM10DV, and
GBO10DV.

what decreased and %RMSE is increased compared with those of
RSM10DV case. This suggests that the additional two design vari-
ables have drastically increased the nonlinear characteristicsof the
objective function and the constraint.

Figure 5 compares airfoil shapes and pressure distributions of
optimized airfoils by GBO12DV, RSM12DV, and GBO50DV. The
designedairfoilby RSM12DV is similar to theairfoil by GBO50DV.
On the other hand, the one by GBO12DV does not show improve-
ment over the result of GBO10DV case.
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Table 5 Summary of aerodynamic performances of optimized airfoils

Airfoil Cl Cd Area Solver time

RAE2822 0.7894 0.01928 0.07780 ——
GBO50DV 0.7894 0.01510 0.07785 (146, 32)D 210
RSM10DV 0.7897 0.01616(0.01615) 0.07815 121
RSM12DV 0.7802 0.01527(0.01546) 0.07780 201
GBO10DV 0.7866 0.01573(0.01579) 0.07781 (24, 2) D 28
GBO12DV 0.7889 0.01582(0.01583) 0.07660 (23, 2) D 27

Fig. 5 GBO50DV, RSM12DV, and GBO12DV.

Although the RSM12DV is not � tted with a quadratic function
as closely as the RSM10DV, note that RSM can � nd the value near
the global optimum in a nonlinear design space with 12 design
variables.However, the GBOM result is still far from the globalone.
We can also conclude that the RSM can design a shock-free airfoil
with fewer design variables than GBOM. This enables the overall
computationalcost in MDO problems to be reducedand renders the
design space so simple that design results can be improved further.
The aerodynamicperformancesof designedairfoilsare summarized
in Table 5.

Because the constructedresponsesurface has an inherent predic-
tion error in RSM, and because lift constraint in GBOM is imposed
as a penalty form, the lift coef� cients by both methodsdo not satisfy
the constraintexactly.GBO12DV doesnot satisfytheareaconstraint

and has a higherdrag coef� cient than GBO10DV. When the number
of design variables is less than 12, the overall computational cost
of RSM is 5 » 10 times that of GBOM with the same number of
design variables. However, GBO50DV requires slightly more com-
putational cost than RSM12DV. This is because the increase of the
number of design variables makes the GBOM numerically ill con-
ditioned and requiresmuch more design iterationnear the optimum
solution.

From the results of the study on the number of design variables,
we can state that RSM with 12 design variables has the competitive
edge over GBOM with 50 design variables for the performance
of the design airfoils and the required computational cost when
locations and the ranges of design variables are carefully selected.
Besides, because the number of design variablesneeded to yield the
best solutions are reduced in RSM, it is con� rmed that RSM can
effectively be applied to MDO problems in the transonic turbulent
� ow regime. This would reduce overall computationalcost in MDO
problems, and the overall design results would be improved further
with the reduced dimension of design space.

Constraint Imposition Methods

In this section, geometric constraints (i.e., the area constraint
and the maximum thickness constraint) are considered. Two

Fig. 6 Airfoil shapes and pressure distributions with area constraints.
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different constraint imposition methods for GBOM are tested as
follows:

Method 1: minimize F D F0 C 10 ¢ max.Area ¡ Area0; 0/

or F D F0 C 10 ¢ max.Maxthickness¡ Maxthickness0; 0/

Method 2: minimize F D F0 subject to G Area0 ¡ Area · 0

or G D Maxthickness0 ¡ Maxthickness · 0 (17)

where F0 D 10 ¢ Cd C max.Cl0 ¡ Cl ; 0/.
In method 1, the design problem becomes an unconstrained one

when the constraintin the objective function is considereda penalty
function term with a mild penalty factor. This may cause the design
results to slightly violate the constraint.

In method 2, on the other hand, the constraint is imposed with a
constrained design option in DOT to meet exactly the constraint.

Throughout,optimizationprocessgradientsof the area constraint
are constant, but those of the maximum thickness constraint vary
because the maximum thickness position may change. However,
the difference in both constraintsdoes not make much difference in
� nal airfoil geometry.

Table 6 shows the design results with the area constraint. The
GBOM results by both methods satisfy the constraint. Method 1

Fig. 7 Airfoil shapes and pressure distributions with maximum thick-
ness constraint.

Table 6 Comparison of design results with area constraint

Solver
Airfoil Cl Cd Area time

RAE2822 0.7894 0.01928 0.07780 ——
GBO50DV (method 1) 0.7894 0.01510 0.07785 210
GBO50DV (method 2) 0.7894 0.01526 0.07779 112
RSM12DV 0.7802 0.01527(0.01546) 0.07780 201

Table 7 Comparison of design results with
maximum thickness constraint

Maximum Solver
Airfoil Cl Cd thickness time

RAE2822 0.7894 0.01928 0.1210 ——
GBO50DV (method 1) 0.7878 0.01596(0.01598) 0.1207 114
GBO50DV (method 2) 0.7713 0.01508(0.01531) 0.1210 295
RSM12DV 0.7788 0.01572(0.01585) 0.1212 201

gives the best aerodynamic performance at a cost of the largest
computational time.

When the maximum thickness constraint is imposed, as shown
in Table 7, method 1 violates the constraint and renders a larger
drag coef� cient than other design methods. Method 2 gives the best
performance in this case, but it also takes the greatest computation
time.

Optimizedairfoilshapesandcorrespondingpressuredistributions
are given in Figs. 6 and 7. When the area constraint is imposed, de-
sign results are almost identical with one another, as can be seen
in Fig. 6. However, when the maximum thickness constraint is im-
posed, the results have different shock strengths, shock locations,
and airfoil shapes, as shown in Fig. 7.

From these two cases,note that the two methodsof geometriccon-
straint speci� cation for the GBOM show different tendenciesfor the
area and maximum thickness constraints. On the other hand, even
though RSM is employed with fewer design variables, RSM gives
reasonable design results regardless of the characteristics of con-
straints with acceptable computational cost. Moreover, any change
of imposed constraints in RSM does not require additional compu-
tational experiments.

Conclusions
The work presented in this paper addresses the viability of RSM

as an alternative design tool in the transonic � ow regime where
a nonsmooth and noisy objective function with constraints exists.
Comparisons are made between RSM and GBOM for various sets
of design variables and geometric constraintspeci� cation methods.

Although RSM has limitationson the number of design variables
due to the computationalcost, the method is found to yield a shock-
free airfoil with a much smaller number of design variables than
GBOM. The design results by GBOM using the adjoint method are
not improved in proportion to the number of design variables.

In contrast, RSM gives robust solutions regardless of the form of
the constraints, whereas GBOM results highly depend on the form
of the geometric constraints.

These observations imply that RSM still retain the generally
known advantages of being in the transonic regime and that RSM
could be a versatile tool in transonic aerodynamicdesign and MDO
problems at any � ow speed regimes.

Acknowledgments
We gratefully acknowledge the support of Center of Innovative

Design Optimization Technology (Engineering Research Center of
Korea Science and Engineering Foundation) and the Brain Korea
21 project.

References
1Narducci, R., Grossman, B., Valorani, M., Dadone, A., and Haftka, R.

“Optimization Methods for Nonsmooth or Noisy Objective Functions in
Fluid Design Problems,” AIAA Paper 95-1648, Jan. 1995.



238 AHN ET AL.

2Eyi, S., Lee, K. D., Rogers, S. E., and Kwak, D., “High Lift Design
Optimization Using the Navier–Stokes Equations,” AIAA Paper 95-0477,
Jan. 1995.

3Lee, K. D., and Eyi,S., “AerodynamicDesign via Optimization,”Journal
of Aircraft, Vol. 29, No. 6, 1992, pp. 1012–1019.

4Chang, I., Toress, F. J., Driscoll, F. P., and van Dam, C. P., “Optimization
ofWing–BodyCon� gurationby the EulerEquations,”AIAA Paper 94-1899,
June 1994.

5Guinta, A. A., “Aircraft Multidisciplinary Design Optimization Using
Design of Experimental Theory and Response Surface Modeling Methods,”
Ph.D. Dissertation, Dept. of Aerospace Engineering, Virginia Polytechnic
Inst. and State Univ., Blacksburg, VA, May 1997.

6Burgee, S., Guinta, A. A., Balalbanov, V., Grossman, B., Mason,
W. H., Narducci, R., Haftka, R. T., and Watson, L. T., “A Coarse-Grained
Parallel Variable-ComplexityMultidisciplinaryOptimizationParadigm,” In-
ternational Journal of Supercomputer Applications and High Performance
Computing, Vol. 10, No. 4, 1996, pp. 269–299.

7Jameson, A., Pierce, N. A., and Maritnelli, L., “Optimum Aerody-
namic Design Using the Navier–Stokes Equations,” AIAA Paper 97-0101,
Jan. 1997.

8Mohammadi, B., “Optimal Shape Design, Reverse Mode of Automatic

Differentiation and Turbulence,” AIAA Paper 97-0099, Jan. 1997.
9Male, J. M., Mohammadi, N., and Schmidt, R., “Direct and Reverse

Modes of Automatic Differentiation of Programs for Inverse Problems,”
Application to Optimum shape Design, Proceedings of the 2nd International
SIAM Workshop on ComputationalDifferentiation, Santafe, 1996.

10Kim, H. J., Kim, C., Rho, O. H., “Aerodynamic Sensitivity Analysis for
Navier–Stokes Equations,” AIAA Paper 99-0402, Jan. 1999.

11Hwang, S. W., “Numerical Analysis of Unsteady SupersonicFlow over
Double Cavity,” Ph.D. Dissertation, Dept. of Aerospace Engineering, Seoul
National Univ., Seoul, Republic of Korea, Feb. 1996.

12Kim, H. J., and Rho, O. H., “Dual-Point Design of Transonic Airfoils
Using theHybrid Inverse Optimization Method,”JournalofAircraft, Vol. 34,
No. 5, 1997, pp. 612–618.

13Vanderplaats, G. N., and Hansen, S. R., DOT USERS MANUAL, VMA
Engineering, Goleta, CA, 1989.

14Myers, R. H., and Montgomery, D. C., Response Surface Methodol-
ogy:Process andProductOptimizationUsing Designed Experiments, Wiley,
New York, 1995, pp. 1–141, 279–401, 462–480.

15Ahn, J., Yee, K., Lee, D.-H., “Two-Point Design Optimization of Tran-
sonic Airfoil Using Response Surface Methodology,”AIAA Paper 99-0403,
Jan. 1999.


