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Response Surface Method for Airfoil Design in Transonic Flow

Jaekwon Ahn,* Hyoung-Jin Kim," Dong-Ho Lee,* and Oh-Hyun Rho®
Seoul National University, Seoul 151-742, Republic of Korea

A response surface method (RSM) applied to a transonic airfoil design problem is studied with other optimization
methods. The objective function and constraints of RSM are modeled by quadratic polynomials, and the response
surfaces are constructed by Navier-Stokes analyses in the transonic flow region. To assess the advantages of RSM,
the design results by RSM are compared to those of a gradient-based optimization method (GBOM), namely,
the discrete adjoint variable method. Comparisons are made for various sets of design variables and geometric
constraints. Itis observed that the response surface method is able to capture the nonlinear behavior of the objective
function and smooth out high-frequency noises in transonic regime. These features enable the method to design
a shock-free transonic airfoil with fewer design variables than in GBOM. In addition, RSM gives robust design
results for the geometric constraints with different characteristics, whereas the GBOM depends heavily on the
method of constraint specification. The results indicate that RSM could be used as an effective design tool for
multidisciplinary design optimization problems, in which flowfields of design conditions are significantly nonlinear

with many constraints imposed.

Nomenclature
C,, C; = aerodynamic coefficients, lift and drag, respectively
E,F = inviscid flux vectors
E,, F, = viscidflux vectors
J = Jacobian
My = number of regression coefficient
ng = number of observations
n, = number of design variables
o = vector of conservative variables
R = residual vector
t/c = thickness-to-chordratio
wy = weighting factors of shape function
X = grid position vector
B = vector of design variables
Subscripts
p = predicted value
0 = baseline property

Introduction

BJECTIVE function and constraints in aerodynamic shape
optimization involving transonic flow numerical simulation
may be nonsmooth and noisy. Nonsmoothness is created by the
presence of flow discontinuitiessuch as shock waves. Noise can be
caused either by the changes in computational mesh geometry due
to free boundaries or by poor convergence of numerical schemes
(as occurs when using flux limiters in a shock capturing scheme).
Although these features can make a small change in some design
parameters, it could lead to a huge ramification in the objective
function or constraints. In such a case, it is likely that the design
results would fall into just local optima. These issues in transonic
flow region are well discussed by Narducci et al.!
These nonsmoothness and noise issues of the objective func-
tion become more serious in gradient-based optimization methods
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(GBOMs), where the objective function value as well as its gradient
information are used. As the result of a solid mathematical back-
ground, GBOMs have been applied to various single disciplinary
design problems, including aerodynamicaircraftcomponentdesign
in all subsonic, transonic, and supersonicregimes.>~* In multidisci-
plinary design optimization (MDO) problems, which usually have
objective functions coupled with numerous constraints, it is sig-
nificantly difficult to formulate the design problem with GBOMs.
Because the optimization depends greatly on the formulation of the
designproblem, the process of searching for the optimumis likely to
renderjustalocal value. Another shortcoming of GBOMs is that be-
cause many analysis programs were not written with an automated
design in mind, adaptation of these programs to an optimization
code may need significant reprogramming in the analysisroutine.

Moreover, additional changes of objectives and constraints re-
quire the whole design process to be recalculated with a heavy com-
putational cost.

In light of this, the response surface method (RSM) drew much
attentionas an efficient tool for the MDO of aerospace vehicles since
early 1990s. RSM is advantageousin MDO applicationsbecause it
providesusefuldisciplinarymodelsthatcan be easily combined with
each model and manipulated together by designers. Recently, RSM
has been successful in combined aerodynamic-structural optimiza-
tion of the high-speed civil transport design where linear behavior
of flow characteristicsis dominant3-®

The purpose of this paper is to verify the applicability of RSM
in transonic design problems where flow characteristics are highly
nonlinear. The validationis performed through quantitativecompar-
isons of the design results with a GBOM using an adjoint variables
method. The adjoint variables method’~! is chosen because the
method makes the computational cost for the gradients of the ob-
jective function or constraints independent of the number of the
design parameters. The method has, thus, been frequently used as
an efficient tool for aerodynamic shape design optimization.

For practical aerodynamic shape design problems, response
surface models of polynomial order higher than two are compu-
tationally too expensive. RSM, if proven feasible to transonic air-
foil design with the quadratic polynomial, is expected to have the
following advantages over other direct optimization methods:

1) It smoothes out the high-frequencynoise of the objective func-
tionandis, thus, expectedto find a solutionnear the global optimum.

2) Various objectives and constraints can be attempted in the
design process without additional numerical computations.

3) It can be effectively applied to MDO problems with many
objectives and constraints.

4) Tt does not require a modification in analysis codes.
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However, there are some drawbacks to RSM. The range of de-
sign parameters highly affects the fitting capabilities of the response
model. The wide ranges may increase prediction errors such that
predicted performancescannot be obtained exactly. RSM also has a
limitation on the number of the design parameters because the com-
putation time for constructionof the response model is proportional
to the square of the number of design parameters.

The objectives of the present paper are as follows: 1) to validate
RSM inthe transonicturbulentflow regionas an aerodynamicdesign
and MDO tool, through comparing the design results with GBOM;
2) to show the effects of the number of design variables on design
results, and 3) to compare constraints handling capability of each
design method.

To achieve these goals, the same flow analysis code for two-
dimensional Navier-Stokes equations is employed in both design
methods. During the comparison between RSM and GBOM, the
affordable number of design variables is studied with the emphasis
on transonic flow applications. Several specifications of geometric
constraints are explored for the optimal design.

The following sections briefly describe the technical framework
of the flow analysis method and optimization method of GBOM
and RSM. Several comparisons of design results are made in the
“Results and Discussions” section.

Flow Analysis

A two-dimensional Navier-Stokes solver developed and vali-
dated in Refs. 11 and 12 is used for the flow analysis. Reynolds-
averaged two-dimensional compressible Navier-Stokes equations
in generalized coordinates are used in the conservation form based
on a cell-centered finite volume approach,

18Q__
J ot

where Q is a four-elementvector of conserved flow variablesas Q =
(p, pu, pv, pe)” and R is the residual vector as R=(E — E,); +
(F - Fv)n~

Roe’s flux differencesplitting scheme is adopted for the space dis-
cretizationin the inviscid flux terms E and F of the residual vector
on the right-hand side; the MUSCL approach with a Koren limiter
is employed to obtain a third-order accuracy. A central difference
method is used for viscous flux terms E, and F, of the residual
vector. For temporal discretization,a Euler implicit method and lin-
earized van Leer flux Jacobian are used. In the implicit part, Beam
and Warming’s alternating direction implicit (ADI) method with
local time steppingis implemented. Turbulence effects are incorpo-
rated using the Baldwin-Lomax algebraic model with a relaxation
technique.

A C-type grid system with 169 x 61 points around an airfoil is
generated by a hyperbolictechnique. The residual of the flow solver
is reduced by four orders of magnitude from the initial condition
during the computations of objective function of the GBOM and
data point of the RSM.

)

Design Objective and Variables
The objective of the present design study is to minimize the drag
C, of anairfoil with constraintson lift and contourarea or maximum
thickness, subjectto C; — C;; > 0:

Area — Areay > 0 or (tfc) —(t/c)y =0 (2)

In GBOM, several forms of objective functions and constraints
were tested to obtain reasonable design results, from which the
following objective function is chosen:

F=10-C;+ max (C, — G, 0) + 10 - max(Area — Areag, 0) (3)

The penalty factor of 10 is multiplied to balance the orders of mag-
nitude of the terms. When the combined objective function is used,
the lift constraint can be slightly violated. If the lift constraint is
imposed with a constrained design option in a gradient-based opti-
mizer, excessivecomputationalcostis expected due to the additional
adjoint code for the gradient of lift constraint.

The airfoil geometry is modified adding a linear combination of
Hicks and Henne shape functions f; as follows:

fi = sin’® [rrxe(k)]

y_ybase+zwk : fk?

k=1

_ &(0.5)

in(x)’
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e(k) @

where x; represents the location of the maximum height of the base
sinusoidal function. Although Hicks and Henne shape functions are
not orthogonal functions, the geometry can be highly perturbed at
the desirable position by controlling the x;.

Gradient-Based Optimization with an Adjoint Method

The GBOM in this work couples a computational fluid dynamics
(CFD) code and a numerical optimizerto create a design tool. In this
study, DOT, a design optimization tool developed by Vanderplaats
and Hansen,'? is adopted. A Broydon-Flectcher-Goldfarb-Shanno
variable metric method is selected for unconstrained minimization
cases and a modified method of feasible directions is selected for
constrained minimization cases.

Sensitivityderivativesare computedby an adjointsensitivityanal-
ysiscode developedby Kim et al.,'® and the code is derived from dis-
crete two-dimensional compressible Navier-Stokes equations with
a Baldwin-Lomax algebraic turbulence model.

The discreteresidual vector of flow equationsfor steady problems
can be written as

R[O(B). X(B). B1=0 ®

The design variable § appears in the residual vector explicitly when
B isanongeometricvariablesuchas incidenceangle, Mach number,
Reynolds number, etc. Equation (5) is directly differentiated with
respectto f; via the chain rule to yield the following equation:

) -Gelle - (Rl - o

The sensitivity derivative of the aerodynamic coefficient C; with
respect to the k-th design variable B, is given by

T T
dc; aC; d aC; dx aC;
dBx 90 dBx D¢ dBx 3B
Because the total derivative of the residual vector {dR/df;} is null

in the steady state, we can introduce the adjoint variable vector and
combine Egs. (6) and (7) to obtain

ﬂ_{a_@}7'{g}+{a_cf}7'{£}+a_@
dg. ~ | a0 dBs X dpi 9B«

el [wE o

Coefficients of the flow variable sensitivity vector {dQ/dB;} form
the following adjoint equation:

aR]" ac;
[E} {)»j}-i-{w} =0 9)

If we find an adjoint variable vector {A;} that satisfies the adjoint
equation, we can obtain the sensitivity derivative of C; with respect
to Bx by the following equation, without any information about the
flow variable sensitivity vector {dQ/dg; }:

sl f g [ 2
dge  lox | ldg s 7 |Lax] s B

(10)
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This makes the computational cost for sensitivity analysis indepen-
dent of the number of design variables.

The adjoint equation (9) is converted to a system of linear al-
gebraic equations and is solved by the same ADI scheme as the
flow solver. The residual of the adjoint sensitivity analysis code is
reduced by four orders of magnitude from an initial value. More
details of the adjoint variable method can be found in Ref. 10.

RSM

RSM builds a response model by calculating data points with
experimental design theory to prescribe a response of a system with
independentvariables.'* The relationshipcan be written in a general
form as follows:

y:F(xl,xz,x3,x4,...,x,,”)+8 (1

where ¢ represents the total error, which is often assumed to have
a normal distribution with a zero mean. The response model F is
usuallyassumed as a second-orderpolynomial, which can be written
for n, variables as follows:

yP =cy+ E cix;p + E CijXiX;,
i

I<i=j=n

p=1,...,n, (12)

Basis functions ¢, (x) for the regressionmodel of Eq. (12) suchas
. . . 42 2. .
150005 X035 X350 e vy Xy Xiy ov ey X X1X05 X1 X3, 00 vy X1 Xy, X2 X3, 00y

Xny— 1 X0y, lead to an overdetermined matrix problem:
y = Xc (13)

wherey = (y', %, ¥*, ..., ¥™), ¢ = (c1, 2, ..., Cure), and X is the
ng X n, matrix, as follows:

(01(x(1)) wnrc(x(l))
X= : : (14)

(0111‘6 ('x (n‘v) ) wlll'C ('x ("“‘))

As a selection technique of data points, the D-optimality
condition'* is used, and the candidate points are three level fac-
torial designs. The D-optimality criterion states that the n; points
to be chosen are those that maximize the determinant |[X” X|. This
criterion has following properties:

1) The data pointset that maximizes |X” X| is also the set of points
that minimizes the maximum variance of any predicted value from
the regression model.

2) The data pointsetthat maximizes | X7 X| is also the set of points
that minimizes the variance of the regression coefficients.

3) The design obtained is invariantto changesin scale.

The regression coefficients ¢; can be determined using the
least-square fitting. The number of regression coefficients (n,.) is
(n,+ 1)(n, +2)/2 in Eq. (12) and the D-optimal point selection
method requires calculating more than n,. data points. It is known
to be sufficientto constructa response model with n; of 1.5~3 times
n,. (Ref. 15). In this study, 121 experiments are performed when n,
is 10, and 201 experiments are performed when n,, is 12.

Becausethe computationtime for the constructionof the response
model is proportionalto the square of the number of design variables
n,, RSM has a limitation on the number of design variables. In
addition, when an airfoil optimized by RSM is analyzed by a CFD
code, one may not obtain the predicted performancesbecause of the
intrinsic prediction error of RSM.

Results and Discussion

RAE2822 is selected as the baseline airfoil of the design study.
The design condition is imposed as M., =0.73, « =2.7 deg, and
Re =17 x 10°. RAE2822 exhibitsa strong shock on the upper surface
under the aforementioned conditions. The lift and drag coefficients
of RAE2822 at the design conditionare 0.7894 and 0.01928, respec-
tively. The contour area of the airfoil is 0.07780 with a maximum
thickness ratio of 0.1210.

Two kinds of design studiesare performedto validate the viability
of RSM in transonic turbulent flow. First, GBOM with different
numbers of design variables are performed to obtain a reference
airfoil for RSM. The design results of GBOM are compared to
those of RSM with a different number of design variables. Second,
two geometric constraints, the area constraint and the maximum
thickness constraint, are tested to asses constraint affordability of
RSM.

Number of Design Variables

In aerodynamic shape design the real design space is infinite di-
mensional. The optimum number of design variables may, thus,
vary according to the design method and the design problem. Gen-
erally, increasing the number of the basis functions may improve
the quality of the design.

The method is named depending on the number of design vari-
ables in GBOM. For instance, GBO50DV indicates 50 variables
design GBOM. Other design cases will also be referred to in similar
ways.

To maintain consistency between design variable sets, a design
variable set with a larger number of design variables is made by
adding new design variables. For example, GBO30DV retains the
design variables of GBO20DV and has 10 extra new design vari-
ables.

All convergence criteria are used as default values in DOT.!?
However, if the objective value is not improved during four (default
value=2) consecutive design iterations, it is considered to have
converged in this work.

Table 1 shows the aerodynamicperformancesand computingtime
of optimized airfoils for various GBOMs. The optimized airfoil
shapes and correspondingpressure distribution are shown in Fig. 1.

The adjoint code executed to compute the gradients of the objec-
tive function requires about twice the CPU time used by the flow
solver. For example, the total solver time (24, 2) for GBO10DV in
Table 1 implies that the number of flow solver calls and the number
of adjointsolver calls is 24 and 2, respectively. This is equivalentto
28 (=244 2 x 2) flow solver analyses during the whole optimiza-
tion process.

The drag coefficients with parentheses in Table 1 are the values
when the lift coefficient is 0.7894. These values are acquired using
a linear interpolation.

Note from Table 1 and Fig. 1 that the obtained performance and
the required computational cost are not proportional to the number
of design variables. Because there is much design iteration near the
optimum without much change of the objective, there seems to be
a higher noise phenomenon of nonsmooth objective function near
the optimum.

GBO20DV and GBO30DV with fewer design variables produce
better results than GBO40DV. GBO20DV minimizes the drag co-
efficient from 0.01928 to 0.01545, satisfying the lift coefficient and
contour area constraints. However, GBO50DV yields the best per-
formance that has the shock-free airfoil under the contour area and
the lift coefficient constraints. The total (pressure plus skin fric-
tion) drag coefficient is reduced from 0.01928to0 0.01510. This case
can thus be considered as a global optimum for the design problem
and the corresponding airfoil is used as a reference airfoil for the
following comparisons.

RSMs are then performed with 10 design variables. Figure 2
shows the variationrange of design variables for RSM10DV. Table 2
presents the fitting quality of the constructed response models.

Table1 Aerodynamic performances of optimized airfoils by GBOM

Airfoil C; Cy L/D  Area Solver time
RAE2822 0.7894 0.01928 40.94 0.07780 e
GBO10DV 0.7866 0.01573(0.01579) 50.00 0.07781 (24,2)=28
GBO20DV 0.7958 0.01545(0.01532) 51.51 0.07898 (53,9)=71
GBO30DV 0.7894 0.01544 51.13 0.07783 (111,24)=159
GBO40DV 0.7894 0.01570 50.28 0.07811 (96,20)=136
GBOS50DV 0.7894 0.01510 52.04 0.07785 (146,32)=210
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Table2 Fitting quality of RSM10DV

Coefficient ~R>  adjusted-R> %RMSE

Cq 0.985 0.968 1.37
G 0.998 0.995 0.20

- e RAE2822
— — — - GBOlODV
- GBO20DV
S . GBO30ODV
— — — — GBO40DV
e - GBO50DV

N
R
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Fig. 1 Airfoil shapes and pressure distribution of GBOMs.

Here, the percentage of root mean square error (%RMSE) is de-
fined as

1 ng 1 ng
%RMSE = 100,/ S -y o dovooas)

Ti=1 Ti=1

R?, the coefficient of multiple determination, is a measure of the
amount of reductionin variability of y obtained by using the regres-
sor variables (design variables) and has the valuebetweenOand 1. A
larger value of R? does not necessarily imply that the model is fitted
well. Adding a variable to the model always increases R?, regardless
of whether the additional variable is statistically significant or not.
Adjusted R? is often employed to consider if nonsignificant terms
have been included in the model. Because the R? and adjusted-R?
values for C; and C; models are larger than 0.96 and %RMSE are
less than 1.5%, the response surface models are fitted successfully.
Therefore, the quadratic models are sufficient to model the nons-
mooth and noisy objective function and the constraints for transonic
turbulent flow.

x/

- = —=-x2

x3

¢ x4

0.0025 f x5
s x6
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E X
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i T IR
0.5 0.75 1
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Fig. 2 Used shape functions and range of design variables.

Figure 3 shows the optimized airfoil shapes and surface pres-
sure distributions by both methods. In both methods the shock
strengths are reduced and suction peaks somewhat increased. In
the case of RSM10DYV, the design results are far from the global
optimum and are almost similar to those of GBO10DV. When com-
pared to GBOS0DV, it is confirmed that RSM 10DV has resulted
in a local minimum. This is mainly due to the insufficient number
of design variables employed. Figure 4 shows the designed airfoil
shapes by GBO10DV, RSM10DV, and GBO5S0DV. Note that 10 de-
sign variables are not sufficient to reflect the sharp change of the
leading edge shape. This can be seen more clearly by analysis of
variance'* (ANOVA) results on the response surface model pre-
sented in Table 3, which shows the results of linear terms of the C,
response model. Here, the #-static is defined as

Ci—1
Jorarx)

A higher ¢-static value means that the term has more dominant
effect on the response model than other terms. As shown in Ta-
ble 3, the design variables x6 and x7 corresponding to an upper
surface leading-edge modification (see Fig. 2) have higher ¢-static
values than others. This strongly implies that we can improve the
designresults by increasing the variationranges of x6 and x7 or by
adding more design variables in that region. However, increasing

t — static = Jj=1,..., N (16)



Table3 Regression analysis and ANOVA data
Variable Coefficient t-static value
x1 —1.217E-04 —2.886
x2 3.063E—04 7.232
x3 4.962E—04 11.482
x4 —1.035E-04 —2.408
x5 —5.557E—-06 —0.130
x6 9.834E—-04 23.195
x7 1.665E—03 39.298
x8 —5.907E—-04 —13.818
x9 5.033E-05 1.202
x10 —2.676E—04 —6.371

RAE2822
RSM10DV
GBOI10DV

RAE2822
RSM10DV
GBO10DV

0.5

| i H 1 I . A Il L l L | 1 1 I L L ! H l
0 0.25 0.5 0.75 1
XiC

Fig. 3 Design results with 10 design variables.

the variation ranges may have negative effect on the fitting quality
of the response surface model. Therefore, two design variables, x11
and x 12 are added as shown in Fig. 2 to the set of 10 design variables
at the leading-edge region of upper surface to allow more drastic
variation of the leading-edge geometry.

For the RSM12DV case, 201 experiments are performed to
construct response surface models, the fitting ability of which is
shown in Table 4. Although the same range of design variables
for the RSM10DV is used, R?> and adjusted-R? values are some-
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Table4 Fitting quality of RSM12DV

Coefficient R?> adjusted-R> %RMSE

Cq 0.943  0.897 3.39
G 0.977  0.958 0.84

o
o
H
N RARAYR TSN s mNn s mmmn L
t
N
A

RAE2822
— — — - GBO1ODV
——— RSM10DV
— ——— GBO50DV

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

o | AREAL ARRAJ LLEEN LERKS b

0.06

0.05

rr Tt

RAE2822
- — — - GBO10DV
———= RSM10DV
— — —— GBO5S0DV

0.03

0.02

0.2
XiC
Fig. 4 Airfoil shapes comparison of GBO50DV, RSM10DV, and
GBO10DYV.

what decreased and %RMSE is increased compared with those of
RSM10DV case. This suggests that the additional two design vari-
ables have drastically increased the nonlinear characteristics of the
objective function and the constraint.

Figure 5 compares airfoil shapes and pressure distributions of
optimized airfoils by GBO12DV, RSM12DYV, and GBO50DV. The
designedairfoilby RSM12DV is similar to the airfoil by GBO50DV.
On the other hand, the one by GBO12DV does not show improve-
ment over the result of GBO10DV case.
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Table5 Summary of aerodynamic performances of optimized airfoils

Airfoil C Cy Area Solver time
RAE2822 0.7894  0.01928 0.07780 —_—
GBO50DV  0.7894  0.01510 0.07785 (146,32)=210
RSMI10DV  0.7897 0.01616(0.01615)  0.07815 121
RSMI2DV  0.7802 0.01527(0.01546)  0.07780 201
GBOI10DV  0.7866  0.01573(0.01579)  0.07781 (24,2)=28
GBOI12DV  0.7889  0.01582(0.01583)  0.07660 (23,2)=27

0.06

0.05

0.04

0.03

0.02

RAE2822
- — — - GBOSODV

— ——- GBOI12DV

-0.03
-0.04
-0.05

-0.06

-1

LESLENLANLAN (LI S

.

RAE2822
— — — - GBOSODV
———= RSM12DV
— ——— GBOI2DV

05

.y I I L L L l ke Lo " L l I L L 1 l
0.25 0.5 0.75 1
Xic

Fig. 5 GBOS50DV, RSM12DV, and GBO12DV.

1 Ll

Although the RSM12DV is not fitted with a quadratic function
as closely as the RSM 10DV, note that RSM can find the value near
the global optimum in a nonlinear design space with 12 design
variables. However, the GBOM resultis still far from the global one.
We can also conclude that the RSM can design a shock-free airfoil
with fewer design variables than GBOM. This enables the overall
computationalcostin MDO problems to be reduced and renders the
design space so simple that design results can be improved further.
The aerodynamicperformancesof designedairfoils are summarized
in Table 5.

Because the constructedresponse surface has an inherent predic-
tion error in RSM, and because lift constraintin GBOM is imposed
as a penalty form, the lift coefficients by both methods do not satisfy
the constraintexactly. GBO12DV doesnotsatisfy the areaconstraint

and has a higherdrag coefficient than GBO10DV. When the number
of design variables is less than 12, the overall computational cost
of RSM is 5~ 10 times that of GBOM with the same number of
design variables. However, GBO5S0DV requires slightly more com-
putational cost than RSM12DV. This is because the increase of the
number of design variables makes the GBOM numerically ill con-
ditioned and requires much more design iteration near the optimum
solution.

From the results of the study on the number of design variables,
we can state that RSM with 12 design variables has the competitive
edge over GBOM with 50 design variables for the performance
of the design airfoils and the required computational cost when
locations and the ranges of design variables are carefully selected.
Besides, because the number of design variables needed to yield the
best solutions are reduced in RSM, it is confirmed that RSM can
effectively be applied to MDO problems in the transonic turbulent
flow regime. This would reduce overall computational costin MDO
problems, and the overall design results would be improved further
with the reduced dimension of design space.

Constraint Imposition Methods

In this section, geometric constraints (i.e., the area constraint
and the maximum thickness constraint) are considered. Two

RAE2822
— — — — GBOS50DV(MethodD)
———— GBOSODV(MethodIl)
— — — — RSMI2DV

05 e RAE2822
— — — - GBOSODV(Methodl)
——— GBOSODV(Methodll)
— — ——~ RSMI2DV
1
: e 1 1 1 l L L L L | L L L L l L L 1 L I
0.25 0.5 0.75 1
X/C

Fig. 6 Airfoil shapes and pressure distributions with area constraints.
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different constraint imposition methods for GBOM are tested as
follows:

Method 1: minimize FF = Fj + 10 - max(Area — Areay, 0)
or F = Fy+ 10 - max(Maxthickness — Maxthickness,, 0)
Method 2: minimize F = Fj subjectto G Area; — Area < 0

or G = Maxthicknesgy — Maxthickness < 0 a7

where Fy=10- C, + max(C,, — C;, 0).

In method 1, the design problem becomes an unconstrained one
when the constraintin the objective functionis considered a penalty
function term with a mild penalty factor. This may cause the design
results to slightly violate the constraint.

In method 2, on the other hand, the constraintis imposed with a
constrained design option in DOT to meet exactly the constraint.

Throughout,optimizationprocess gradients of the area constraint
are constant, but those of the maximum thickness constraint vary
because the maximum thickness position may change. However,
the difference in both constraintsdoes not make much differencein
final airfoil geometry.

Table 6 shows the design results with the area constraint. The
GBOM results by both methods satisfy the constraint. Method 1

0.06 T
0.05

0.04

RAE2822

0.01
— — — — GBO50DV(Methodl)
> 0 - —— GBOS50DV(Methodll)
- — —— RSMI12DV

-0.02
-0.03
-0.04
-0.05

-0.06

RAE2822
— = — — GBO50DV(Method )
————-= GBOS5ODV(Method ID)
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Fig. 7 Airfoil shapes and pressure distributions with maximum thick-
ness constraint.

Table 6 Comparison of design results with area constraint

Solver
Airfoil C Cy Area time
RAE2822 0.7894 0.01928 0.07780 ——
GBO50DV (method 1)  0.7894 0.01510 0.07785 210
GBO50DV (method 2) 0.7894  0.01526 0.07779 112
RSM12DV 0.7802 0.01527(0.01546) 0.07780 201

Table 7 Comparison of design results with
maximum thickness constraint

Maximum Solver

Airfoil Cy Cy thickness time
RAE2822 0.7894 0.01928 0.1210 —_—
GBO50DV (method 1) 0.7878 0.01596(0.01598) 0.1207 114
GBO50DV (method 2) 0.7713 0.01508(0.01531) 0.1210 295
RSM12DV 0.7788 0.01572(0.01585) 0.1212 201

gives the best aerodynamic performance at a cost of the largest
computational time.

When the maximum thickness constraint is imposed, as shown
in Table 7, method 1 violates the constraint and renders a larger
drag coefficient than other design methods. Method 2 gives the best
performance in this case, but it also takes the greatest computation
time.

Optimizedairfoil shapesand correspondingpressuredistributions
are given in Figs. 6 and 7. When the area constraintis imposed, de-
sign results are almost identical with one another, as can be seen
in Fig. 6. However, when the maximum thickness constraint is im-
posed, the results have different shock strengths, shock locations,
and airfoil shapes, as shown in Fig. 7.

From these two cases, note that the two methods of geometriccon-
straint specification for the GBOM show differenttendencies for the
area and maximum thickness constraints. On the other hand, even
though RSM is employed with fewer design variables, RSM gives
reasonable design results regardless of the characteristics of con-
straints with acceptable computational cost. Moreover, any change
of imposed constraintsin RSM does not require additional compu-
tational experiments.

Conclusions

The work presented in this paper addresses the viability of RSM
as an alternative design tool in the transonic flow regime where
a nonsmooth and noisy objective function with constraints exists.
Comparisons are made between RSM and GBOM for various sets
of design variables and geometric constraintspecification methods.

Although RSM has limitations on the number of design variables
due to the computational cost, the method is found to yield a shock-
free airfoil with a much smaller number of design variables than
GBOM. The design results by GBOM using the adjoint method are
not improved in proportion to the number of design variables.

In contrast, RSM gives robust solutions regardless of the form of
the constraints, whereas GBOM results highly depend on the form
of the geometric constraints.

These observations imply that RSM still retain the generally
known advantages of being in the transonic regime and that RSM
couldbe a versatile tool in transonic aerodynamic design and MDO
problems at any flow speed regimes.
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